Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications

Mohammed. Mesrar, Amal. Boukili, and Hamza. Mesrar

Signals, Systems and Components Laboratory (LSSC), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Fez, Morocco.

* Corresponding author: mohammed.mesrar@usmba.ac.ma

Abstract-The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na_{0.5}Bi_{0.5})TiO₃-xBaTiO₃-y(K_{0.5}Bi_{0.5})TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined as 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study introduces a novel approach to enhance the performance of lead-free ferroelectric systems with the composition 0.79(Na_{0.5}Bi_{0.5})Ti O₃-0.05BaTiO₃-0.16(K_{0.5}Bi_{0.5})TiO₃.

Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, Morphotropic phase boundary (MPB), Raman spectroscopy, Dielectric properties