Unraveling the Catalytic Performance of RuO₂(110) for Highly-selective Ethylene Production from Methane at Low Temperature: Insights from First-Principles and Microkinetic Simulations

Santhanamoorthi Nachimuthu* and Jyh-Chiang Jiang

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan. Email: santhanamoorthi@mail.ntust.edu.tw

Abstract

Despite significant progress in low-temperature methane (CH₄) activation, commercial viability, specifically obtaining high yields of C_1/C_2 products, remains a challenge. High desorption energy (>2 eV) and overoxidation of the target products are key limitations in CH₄ utilization. Herein, we employ first-principles density functional theory (DFT) coupled with microkinetics simulations to investigate the CH₄ activation and the feasibility of its conversion to ethylene (C_2H_4) on the RuO₂ (110) surface. The C-H activation and CH₄ dehydrogenation processes are thoroughly investigated, with a particular focus on the diffusion of surface intermediates. The results show that the RuO_2 (110) surface exhibits high reactivity in CH_4 activation ($E_a = 0.60 \text{ eV}$), with CH₃ and CH₂ are the predominant species, and CH₂ being the most mobile intermediate on the surface. Consequently, self-coupling of CH₂^{*} species via C-C coupling occurs more readily, yielding C_2H_4 , a potential raw material for the chemical industry. More importantly, we demonstrate that the produced C₂H₄ can easily desorb under mild conditions due to its low desorption energy of 0.97 eV. Microkinetic simulations based on the DFT energetics indicate that CH₄ activation can occur at temperatures below 200 K, and C₂H₄ can be desorbed at room temperature. Further, the selectivity analysis predicts that C_2H_4 is the major product at low temperatures (300 - 450 K) with 100% selectivity, then competes with formaldehyde at intermediate temperatures in the CH₄ conversion over RuO₂ (110) surface. The findings in this work provide a deeper understanding of the catalytic performance of the RuO₂ (110) surface towards CH_4 activation and suggest that the RuO₂ (110) surface could be used to produce C_2H_4 under industrially milder conditions.

Biography

Dr. Santhanamoorthi Nachimuthu currently is a senior researcher at the Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. With extensive expertise in electronic structure calculations, he specializes in Computational Materials Science, adept at developing and employing computational models to simulate biomolecules and materials crucial for energy conversion and storage. His research also involves a pivotal understanding of the heterogeneous catalytic reactions for various applications.

